Stable nongaussian diffusive profiles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Non-gaussian Diffusive Profiles

We prove two stability results for the scale invariant solutions of the nonlinear heat equation ∂ t u = ∆u−|u| p−1 u with 1 < p < 1+ 2 n , n being the spatial dimension. The first result is that a small perturbation of a scale invariant solution vanishes as t → ∞. The second result is global, with a positivity condition on the initial data.

متن کامل

Evolutionarily Stable Diffusive Dispersal

We use an evolutionary approach to find “most appropriate” dispersal models for ecological applications. From a random walk with locally or nonlocally defined transition probabilities we derive a family of diffusion equations. We assume a monotonic dependence of its diffusion coefficient on the local population fitness and search for a model within this class that can invade populations with ot...

متن کامل

Diffusive reaction dynamics on invariant free energy profiles.

A fundamental problem in the analysis of protein folding and other complex reactions in which the entropy plays an important role is the determination of the activation free energy from experimental measurements or computer simulations. This article shows how to combine minimum-cut-based free energy profiles (F(C)), obtained from equilibrium molecular dynamics simulations, with conventional his...

متن کامل

Diffusive Mixing of Stable States in the Ginzburg–Landau Equation

The Ginzburg-Landau equation ∂tu = ∂ 2 xu+u−|u|u on the real line has spatially periodic steady states of the the form Uη,β(x) = √ 1−η2 ei(ηx+β), with |η| ≤ 1 and β ∈ R. For η+, η−∈(− 1 3 , 1 √ 3 ), β+, β−∈R, we construct solutions which converge for all t > 0 to the limiting pattern Uη±,β± as x → ±∞. These solutions are stable with respect to sufficiently small H2 perturbations, and behave asy...

متن کامل

9 Sparse NonGaussian Component Analysis ∗

Non-gaussian component analysis (NGCA) introduced in [24] offered a method for high dimensional data analysis allowing for identifying a low-dimensional non-Gaussian component of the whole distribution in an iterative and structure adaptive way. An important step of the NGCA procedure is identification of the non-Gaussian subspace using Principle Component Analysis (PCA) method. This article pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 1996

ISSN: 0362-546X

DOI: 10.1016/0362-546x(94)00300-7